
AN EFFICIENCY-DRIVEN APPROACH FOR
REAL-TIME OPTICAL FLOW PROCESSING ON PARALLEL HARDWARE

Mickaël Seznec∗,†, Nicolas Gac∗, François Orieux∗, Alvin Sashala Naik†

∗ Univ. Paris-Saclay, CNRS, CentraleSupelec, L2S, Gif-sur-Yvette, 91192 France
† Thales Research and Technology, Palaiseau, 91120 France

ABSTRACT

This article tackles the entire lifecycle of an algorithm: from
its design to its implementation. It exhibits a method for mak-
ing efficient choices at algorithm design time knowing the
characteristics of the underlying hardware target. As of to-
day, computing the optical flow of a stream of images is still
a demanding task. In the meantime, the use of Graphics Pro-
cessing Units (GPU) has become mainstream and allows sub-
stantial gains in processing frame rate. In this paper, we focus
on a specific variational method (CLG [1]) where linear sys-
tems have to be solved. They depend on two parameters α and
ρ. To efficiently solve the problem, we look at convergence
speed with respect to the model’s parameters. We benchmark
usual linear solvers with preconditioners to identify the fastest
in terms of convergence per iteration. We then show that once
implemented on GPUs, the most efficient solver changes de-
pending on the model parameters. For 640 × 480 images,
with the right choice of solver and parameters, our implemen-
tation can solve the system with relative 10e−7 accuracy in
0.25 ms on a Titan V GPU. All the results are aggregated on
a 30-image set to increase confidence in their extendability.

Index Terms— Optical Flow, GPU, Linear Solvers, Ma-
trix Conditioning

1. INTRODUCTION

Optical flow is the apparent movement of objects in a se-
quence of images. As a computer vision task, that means
finding the displacement of every pixel from one image to an-
other. Numerical methods are based on a constrained model
for the pixels’ movement. Early works on optical flow have
been done by Lucas & Kanade[2] and Horn & Schunck[3].

The latter uses a variational regularisation: an energy pe-
nalisation is defined for a candidate flow. The goal is to find
the flow that would minimise this penalisation. This method
is challenging as it is not possible to have a direct solution
pixel per pixel. It involves iterations over the whole image.
Fig. 1 shows that many iterations are required to get a sat-
isfying flow. Speeding-up this convergence process is thus
required for real-time.

(a) 5 iterations (b) 50 iterations

(c) 500 iterations (d) Ground-truth
optical flow

0 100 200 300 400 500
Number of iterations

10 2

10 1

100

Re
la

tiv
e 

di
st

an
ce

 to
 b

es
t e

ne
rg

y

Image 'a'

Image 'b'

Image 'c'

(e) Energy levels of the first three images

Fig. 1: Colour representation of optical flow evolution after
an increasing number of Jacobi iterations

To tackle this issue, many recent works on optical flow
leverage the massive computing power of GPUs[4, 5, 6].
Originally reserved for computer graphics and 3D-scenes
rendering, they now play a prominent role in image process-
ing.

The issue with GPU is that the performance gains dramat-
ically depends on the algorithm. Usually, authors either di-
rectly port existing methods on GPU or design an original al-
gorithm from scratch and with parallel platforms in mind [7].
The former approach may be sub-efficient or helpless if the
algorithm is not well suited for GPUs. The latter requires de-
manding work to develop a whole new method.

In this article, we try to find a compromise between the
two. The overall algorithm structure stays the same, but the
parametrisation and the solver change, to fit GPUs better



while keeping similar results.
This article is organised as follows. In Sec. 2, a model

of optical flow is presented, and we set the notations. In
Sec. 3, we present some linear solvers with preconditioning
techniques. In Sec. 4, we analyse the condition number of our
problem depending on its parameters. Then, we use several
solvers on our dataset to find the one that converges the fastest
in terms of iterations. Lastly, we implement those solvers on
GPU to compare their convergence against the time they take.
Sec. 5 concludes about how to choose a solver and parame-
ters with a GPU target in mind. It also aims at widening the
results’ scope to other problems that rely on linear solvers too.

2. OPTICAL FLOW

In the optical flow problem, we wish to find the displace-
ment field w̄x,y,t = (ux,y,t, vx,y,t, 1)

T for every frame of size
(w,h) in an image sequence. Let fx,y,t be the intensity of a
pixel at coordinates (x, y) at time t.

In a variational method, the solution flow is the one that
minimises an energy of the form

E(w) =

∫
Ω

Df,w̄(wx,y,t) +Rw(wx,y,t) dxdy

where D and R are two functionals that define the optical
flow model. D depends on the image sequence f and the
unknown field w̄. R only depends on w̄ and plays the role
of a regularisation. For clarity, we set w = w̄x,y,t. Horn &
Schunck’s choice for D and R becomes

D(w) = wTJ0w, J0 = (∇f)(∇f)
T

R(w) = α(‖∇u‖2 + ‖∇v‖2), α ∈ R+

Bruhn et al.[1] use a version of D that takes into account the
pixel’s neighbourhood

D(w) = wTJρw, Jρ = Kρ ∗ J0

Jρ =

j00
ρ j01

ρ j02
ρ

j10
ρ j11

ρ j12
ρ

j20
ρ j21

ρ j22
ρ


where Kρ denotes a Gaussian kernel and ∗ is the convolution
operator.

To minimiseE, the Euler-Lagrange equations can be used
to take the derivative of the integral then set it to zero. Another
option is to discretise the integral form. We use ¯̄x = flat(x̄),
the operator that takes a 2D-field x̄ and reshape it into a vector
x in the row-major order, and diag(x) that builds a diagonal
matrix X that holds x in its main diagonal. Here is an exam-
ple of discretising the CLG energy

ECLG(w) =

∫
Ω

wTJρw + α(‖∇u‖2 + ‖∇v‖2) dx dy

= ‖H ¯̄w − g‖2 + α
(
‖DxSu ¯̄w‖2 + ‖DySu ¯̄w‖2+

‖DxSv ¯̄w‖2 + ‖DySv ¯̄w‖2
)

Su and Sv are diagonal matrices that respectively select the u
and v parts of ¯̄w. Dx and Dy are the derivatives along the x
and y axes. To minimise this quantity, let’s take the derivative
with respect to ¯̄w and set it to zero

HTH ¯̄w + α
[
STu (DT

xDx + DT
yDy)Su ¯̄w+

STv (DT
xDx + DT

yDy)Sv ¯̄w
]

= −gTH

We can express it as Ax = b, with

A =

[
diag flat j̄00

ρ diag flat j̄10
ρ

diag flat j̄10
ρ diag flat j̄11

ρ

]
− α

[
L 0
0 L

]
b = −gTH = −

[
flat j̄02

ρ

flat j̄12
ρ

]
with L representing the Laplacian operator. It is now clear
that finding the optical flow is a matter of solving a system
of linear equations Ax = b where A ∈ R(2·w·h)×(2·w·h) is a
very large and sparse matrix, x ∈ R2·w·h in the wanted flow
and b ∈ R2·w·h completes the equations.

3. SOLVERS REVIEW

To solve linear systems such as Ax = b, many methods can
be used. We must, however, restrict ourselves to the ones rel-
evant for very large and sparse A. In previous works, matrix
splitting methods have often been used. Horn & Schunck rely
on a Jacobi-like iteration, while Jara-Wilde et al. use a so-
called Pointwise-Coupled Gauss-Seidel in [8]. Krylov meth-
ods such as Conjugate Gradient (CG) can be found in [4].
This section will recall the foundations of these methods.

3.1. Matrix Splitting

The matrix splitting methods partition the matrix into two

A = B −C

By replacing A in Ax = b, we have

Bx = b + Cx

Assuming that B is invertible, that leads to the following
fixed-point iteration

xn+1 = B−1(b + Cxn)

The key idea is to choose B to be easily invertible. Setting B
to hold the diagonal elements of A forms the Jacobi method.
Using the lower or upper triangular part A is known as the
Gauss-Seidel method.

These methods are generic and can be adapted to a partic-
ular problem. For optical flow, we use the upper and lower di-
agonal blocks for the inversion. We modify the Jacobi method
to be

B =

[
diag flat j̄00

ρ + 4α diag flat j̄10
ρ

diag flat j̄10
ρ diag flat j̄11

ρ + 4α

]



This example is what we call “preconditioned” Jacobi. This
process applies to other splitting methods.

3.2. Krylov methods

Krylov solvers all emerge from the same premise: at each
iteration, increasing the dimension of the space where to look
for a solution. The Krylov space of order n is defined as

Kn(A, b) = span{b,Ab,A2b, . . . ,An−1b}.

The choice of the solution in this space leads to different
methods: Conjugate Gradient (CG), minimal residual (MIN-
RES), generalised minimal residual (GMRES), etc. Precon-
ditioned methods rely on having a matrix M similar to A but
easily invertible. This way, the problem becomes

M−1Ax = M−1b.

As with splitting methods, we choose M to hold the main
diagonal and the upper and lower diagonal blocks of A. A
preconditioner is useful when M−1A has a better condition-
ing than A alone.

4. RESULTS

Throughout this section, we display results aggregated on
30 images from several public datasets: Middlebury [9],
MPI Sintel [10] and KITTI [11]. The error bands give
the 95% confidence interval computed using the bootstrap
method [12]. In Subsec. 4.3, we use a Titan V GPU from
Nvidia, that we implement using CUDA/C++.

4.1. Matrix conditioning

The matrix condition number κ quantifies by how much the
result of our model would change with a small perturbation in
the input data. A low condition number reflects the robustness
of the problem to noise and also hints that the solvers are to
perform well [13].

Our optical flow model has two parameters: ρ and α. ρ is
the radius parameter, it enforces a local regularisation of the
flow. α ponderates the regularisation based on the gradient of
the flow.

Fig. 2 shows the matrix condition number with varying
parameters in the model. The results are normalised with re-
spect to the condition number when α = 0 and ρ = 0. For the
condition number to be computationally tractable, the images
have been downsized.

Without preconditioning, κ follows a V-shape with re-
spect to α: increasing α is first beneficial as it adds regularisa-
tion to the problem. After a certain amount, however, it makes
the problem unstable as it would be almost only determined
by the regularisation and hardly by the data.

Rho can also make κ decrease, as it averages constraints
over a neighbourhood, making it less sensitive to outliers.

10 4 10 2 100

Alpha

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e 

co
nd

iti
on

 n
um

be
r Rho

0.0
2.0
4.0
6.0
Preconditioner
None
Diagonals

Fig. 2: Normalised condition number of the problem versus
parameters’ value.

0 50 100 150 200
10 11

10 9

10 7

10 5

10 3

10 1

 = 5e-3

0 50 100 150 200
Iterations

10 11

10 9

10 7

10 5

10 3

10 1
Re

la
tiv

e 
di

st
an

ce
 to

 b
es

t e
ne

rg
y

 = 5e-6

Solver type
CG
Jacobi
RB Gauss-Seidel
Preconditioner
None
Diagonals

Fig. 3: Convergence vs iterations with ρ = 2.5. On the top
α = 5e−3, on the bottom α = 5e−6

However, when alpha is already too large, ρ hardly helps
counteract the ill-posedness.

The preconditioner is helpful only with a low α. This
seems logical as the preconditioner we defined depends on
the data term and not much on the regularisation.

With that in mind, one could tune the parameters to de-
crease the condition number of the matrix and thus converge
as fast as possible.

4.2. Solvers’ convergence speed

For Fig. 3, we chose two sets of parameters to compare the
convergence of the aforementioned solvers. We tried several
Krylov solvers from Python scipy.sparse [14] library but only
reported CG as they all had similar results. Splitting methods
were developed by ourselves, with Red-Black Gauss-Seidel
being a more parallel version of Gauss-Seidel [15].

The results are strikingly different depending on α. When
α is low, preconditioned method converges quickly (up to
10−11 in 200 iterations). CG is faster but splitting methods
are not far behind. On the contrary, when α is higher, all



0 1 2 3 4 5 6 7

10 9

10 7

10 5

10 3

10 1

 = 5e-3

0 1 2 3 4 5 6 7
Time (ms)

10 9

10 7

10 5

10 3

10 1

Re
la

tiv
e 

di
st

an
ce

 to
 b

es
t e

ne
rg

y

 = 5e-6

Solver type
CG
Jacobi
RB Gauss-Seidel
Precision
FP64
FP32
Preconditioner
None
Diagonals

Fig. 4: Convergence vs time on GPU. Same parameters as in
Fig 3.

solvers converge slowly (10−7 in 500 iterations) and splitting
methods are even worse.

Consistently with the results found in 4.1, the effects of
the preconditioner are less visible with higher α. On the
top figure, preconditioned and non-preconditioned versions
of splitting solvers are confounded.

4.3. Implementation Performance

The previous section has established a ranking amongst
solvers but only in terms of iterations. When processing
optical flow in real-time, we are rather interested in the time
of convergence.

The GPU implementations for the splitting methods are
straightforward: they only rely on pixel-wise operations and
are hence “embarrassingly parallel”. Regarding Krylov meth-
ods, they must use reductions to compute vector norms. This
operation is not well adapted to GPU. We took extra care to
let the reduction result stay on GPU to avoid expensive la-
tency in CPU-GPU communication. This was done using the
CUB library (CUDA UnBound) that provides state-of-the-art
performance for GPU reductions.

Fig. 4 shows the convergence timings for different solvers
on GPU with a maximum number of iterations of 1000. Glob-
ally, the curves follow the same trend as Fig. 3. However, the
relative speed of solvers changes once implemented on GPU.
For a low α (bottom figures), while CG goes faster theoreti-
cally, Jacobi and RB Gauss-Seidel start faster. One iteration
of Jacobi is indeed faster than one iteration of CG on GPU.
With a larger alpha, the results are coherent with Fig. 3. CG
is the fastest. The velocity of splitting methods do not catch
up with their lower theoretical convergence speed.

One caveat of CG is that it is very sensitive to its search di-
rection, conditioned by the reduction operation. With the 32-

bit floating-point (FP32) precision, it becomes unstable after
a low number of iterations. FP64 makes it better, the solver
diverges later, but it could still be an issue.

Globally, FP32 methods are faster than FP64, as more
FP32 compute units are available on GPU. It could be inter-
esting to use FP32 first to benefit from their speed and finish
using FP64 for stability reasons.

5. CONCLUSION

In this paper, we presented the variational optical flow prob-
lem from the algorithm to its implementation. We made an
in-depth exploration of the effects of the parameters on the
conditioning of the problem. This way, we were able to tell
which problems would be easier to solve and where the pre-
conditioner could help.

We then reviewed the theoretical speed of solvers regard-
ing the number of iterations and compared them to their ac-
tual performance once implemented on GPU. We showed that
the splitting methods being better suited for GPUs, they over-
come their theoretical weaknesses for some problem param-
eters. However, the performance of CG remains better on
harder problems, where α is higher. This work highlights that
knowing both the algorithm and the target is needed to choose
the most efficient solver.

While being specific to variational optical flow, these con-
clusions may be useful to other problems involving linear
solvers. The timings are ultimately problem-dependent. The
speed of solvers, relatively to each other, and their character-
istics should, however, remain constant in any setting.

In the future, our analysis could be further extended to
non-quadratic models, multigrid solvers, or upon the use of
embedded GPUs, such as the Nvidia Jetson devices.



6. REFERENCES

[1] Andrés Bruhn, Joachim Weickert, and Christoph
Schnörr, “Lucas/Kanade Meets Horn/Schunck: Com-
bining Local and Global Optic Flow Methods,” Inter-
national Journal of Computer Vision, vol. 61, no. 3, pp.
1–21, Feb. 2005.

[2] Bruce D. Lucas and Takeo Kanade, “An Iterative Image
Registration Technique with an Application to Stereo
Vision,” in Proceedings of the 7th International Joint
Conference on Artificial Intelligence - Volume 2, Van-
couver, BC, Canada, 1981, IJCAI’81, pp. 674–679,
Morgan Kaufmann Publishers Inc.

[3] Berthold K. P. Horn and Brian G. Schunck, “Determin-
ing optical flow,” Artificial Intelligence, vol. 17, no. 1,
pp. 185–203, Aug. 1981.

[4] Narayanan Sundaram, Thomas Brox, and Kurt Keutzer,
“Dense Point Trajectories by GPU-Accelerated Large
Displacement Optical Flow,” in Computer Vision –
ECCV 2010, vol. 6311, pp. 438–451. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[5] Clément Moussu, “GPU based real-time optical ow
computation,” Tech. Rep.

[6] Andrea Petreto, Arthur Hennequin, Thomas Koehler,
Thomas Romera, Yohan Fargeix, Boris Gaillard,
Manuel Bouyer, Quentin L Meunier, and Lionel Lacas-
sagne, “Energy and execution time comparison of opti-
cal flow algorithms on simd and gpu architectures,” in
2018 Conference on Design and Architectures for Signal
and Image Processing (DASIP). IEEE, 2018, pp. 25–30.

[7] Juan David Adarve Bermudez, Real-Time Visual Flow
Algorithms for Robotic Applications, Ph.D. thesis.

[8] Jorge Jara-Wilde, Mauricio Cerda, José Delpiano, and
Steffen Härtel, “An Implementation of Combined
Local-Global Optical Flow,” Image Processing On Line,
vol. 5, pp. 139–158, June 2015.

[9] Simon Baker, Stefan Roth, TU Darmstadt, and Daniel
Scharstein, “A Database and Evaluation Methodology
for Optical Flow,” p. 8.

[10] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A
naturalistic open source movie for optical flow evalua-
tion,” in European Conf. on Computer Vision (ECCV),
A. Fitzgibbon et al. (Eds.), Ed. Oct. 2012, Part IV,
LNCS 7577, pp. 611–625, Springer-Verlag.

[11] A Geiger, P Lenz, C Stiller, and R Urtasun, “Vision
meets robotics: The KITTI dataset,” The International
Journal of Robotics Research, vol. 32, no. 11, pp. 1231–
1237, Sept. 2013.

[12] Michael Waskom, Olga Botvinnik, Drew O’Kane,
Paul Hobson, Saulius Lukauskas, David C Gemper-
line, Tom Augspurger, Yaroslav Halchenko, John B.
Cole, Jordi Warmenhoven, Julian de Ruiter, Cameron
Pye, Stephan Hoyer, Jake Vanderplas, Santi Villalba,
Gero Kunter, Eric Quintero, Pete Bachant, Marcel
Martin, Kyle Meyer, Alistair Miles, Yoav Ram, Tal
Yarkoni, Mike Lee Williams, Constantine Evans, Clark
Fitzgerald, Brian, Chris Fonnesbeck, Antony Lee, and
Adel Qalieh, “Mwaskom/seaborn: V0.8.1 (September
2017),” Zenodo, Sept. 2017.

[13] Jonathan Richard Shewchuk, An Introduction to the
Conjugate Gradient Method without the Agonizing Pain,
Carnegie-Mellon University. Department of Computer
Science, 1994.

[14] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
Vand erPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, Paul van Mulbregt, and SciPy 1. 0 Contribu-
tors, “SciPy 1.0: Fundamental algorithms for scientific
computing in python,” Nature Methods, 2020.

[15] Yousef Saad, Iterative Methods for Sparse Linear Sys-
tems: Second Edition, SIAM, Jan. 2003.


